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Abstract. By considering the master equation of asymmetric exclusion process on a one-dimensional lattice,
we obtain the most general boundary condition of the multi-species exclusion processes in which the
number of particles is constant in time. This boundary condition introduces the various interactions to the
particles, including ones which have been studied yet and the new ones. In these new models, the particles
have simultaneously diffusion, the two-particle interactions AαAβ → AγAδ, and the n-particle extended
drop-push interaction. The constraints on reaction rates are obtained and in two-species case, they are
solved to obtain a solvable model. The conditional probabilities of this model are calculated.

PACS. 82.20.Mj Nonequilibrium kinetics – 02.50.Ga Markov processes – 05.40.-a Fluctuation phenomena,
random processes, noise, and Brownian motion

1 Introduction

One-dimensional asymmetric simple exclusion processes
(ASEP) have been shown to be of physical interest in var-
ious problems in recent years. These problems are, for
example: the kinetics of biopolymerization [1,2], traffic
models [3], polymers in random media, dynamical models
of interface growth [4,5], noisy Burgers equation [6], and
study of the shocks [7,8]. There are many review articles
in these fields, see for example [9–15].

The totally ASEP has been solved exactly in refer-
ence [16]. In this simple model, each lattice site is occupied
by at most one particle and particles hop with rate one
to their right-neighboring sites if they are not occupied.
The model is completely specified by a master equation
and a boundary condition, imposed on probabilities ap-
pear in the master equation. The coordinate Bethe ansatz
has been used to show the factorization of the N -particle
scattering matrix to the two-particle matrices.

By choosing other suitable boundary conditions, with-
out changing the master equation, one may study the
more complicated reaction-diffusion processes, even with
long-range interaction. In reference [17], the so-called
drop-push model has been studied by this method. In this
model the particle hops to the next right site even it is
occupied. The particle hops to this site by pushing all the
neighboring particles to their next right sites, with a rate
depending on the number of right neighboring particles.
The generalization of this model, by considering both the
right and left hopping, has been done in reference [18].
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Further generalization of the ASEP boundary condition
have been proposed in [19–21]. As a comprehensive review
on the ASEP, see [22].

All of the above studies are about the single-species
systems. If one considers the model with more-than-one
species, the situation becomes more complicated. The
source of complexity is the abovementioned factoriza-
tion of N -particle scattering matrix, which in these cases
restricts the two-particle S-matrices satisfies in some
kind of spectral Yang-Baxter (SYB) equation. In refer-
ence [23], all the solvable two-species reaction-diffusion
models, in which the number of particles is constant in
time and the reaction rates are all equal, have been ob-
tained. It was shown that there are 28 independent in-
teractions (among 4096 possible types) which are solv-
able. One of these 28 models, in which the particles have
exchange-interaction: A + B → B + A, has been gener-
alized to p species in reference [24]. In this model, be-
sides diffusion to the right (with equal rates), particles
interact through Aj + Ai → Ai + Aj with rate rij . The
spectrum of rij , to ensure the solvability, has been ob-
tained. Another multi-species reaction-diffusion model,
which somehow relates to one considered in [24], has
been discussed in [25]. In this model the particles have
exchange-interaction with rates which are determined by
the differences of their diffusion rates.

The multi-species generalization of the models consid-
ered in [23], has been considered in [26]. The processes are

Aα∅ → ∅Aα with rate 1,
AαAβ → AγAδ with rate cαβ

γδ . (1)
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Again the solvability restricts the reaction rates cαβ
γδ . Some

general remarks on the solution of SYB equation, and
some special solutions of it have been given in [26].

Recently, the generalization of the drop-push model to
multi-species case has been considered in reference [27].
The reactions are

Aα∅ → ∅Aα with rate 1,
AαAβ∅ → ∅AγAδ with rate bαβ

γδ . (2)

The same drop-push reactions, but with n adjacent parti-
cles and with rates that are specified by a specific combina-
tions of bαβ

γδ ’s, also exist. Some comments have been given
for solutions of SYB equation in [27]. The reactions (2)
are called the extended drop-push reactions.

In this paper we are going to study the most general
multi-species model, i.e. the most general boundary con-
dition, which all the previous mentioned models are the
special cases of it. In its general form, the reactions are

Aα∅ → ∅Aα with rate 1,
AαAβ → AγAδ with rate cαβ

γδ ,

AαAβ∅ → ∅AγAδ with rate bαβ
γδ ,

... (3)

where the dots indicates the other drop-push reactions
with n adjacent particles, in which in the meantime the
types of the particles can also be changed. We show that
the reaction rates must satisfy some specific constraints, in
order that we have a set of consistent evolution equations.
The two-particle S-matrices of this general multi-species
model must also satisfy SYB equation, which in this case
becomes more complicated. In the two-species case, we
study a special class of reactions (3) in detail and show
that in this class, there is only one solvable model, i.e. the
solution of SYB equation is unique in this case. We study
some physical properties of this unique model.

The scheme of the paper is the following. In Section 2,
by using the law of conservation of probabilities, we ob-
tain the most general boundary condition for a p-species
reaction-diffusion model, in terms of two p2 × p2 matri-
ces b and c. We obtain a constraint on the sum of the
elements of each column of matrix b + c. We see that in
special cases, this model is same as those have been stud-
ied previously. In Section 3, we consider the matrix c as a
diagonal matrix. It is shown that there are two cases. In
the first case, the matrix b must be also diagonal, which
the model reduces to the ordinary, i.e. single-species,
drop-push model with variable rate. In the second case,
c must be zero matrix, which the model becomes the one
considered in [27], that is the extended drop-push model.
In Section 4, we take c a non-diagonal matrix and ob-
tain the necessary and sufficient conditions (constraints)
for the matrices b and c, to have a consistent evolution
equations. We see that the reactions are those indicated
in equation (3). We find some classes of solutions of this
set of constraints. In Section 5, we investigate the coor-
dinate Bethe ansatz solution for our problem and obtain
the SYB equation, to ensure the solvability of the model.

For p = 2, we show that for a specific class of parameters,
which corresponds to a special exchange-reaction together
with a special extended drop-push model, the SYB equa-
tion has a unique solution. Finally in Section 6, the con-
ditional two-particle probabilities are calculated for this
unique model, and their large-time behaviour are studied.

2 The general boundary condition

Consider a p-species system with particles A1, A2, · · · , Ap.
The basic quantities that we are interested in are the prob-
abilities Pα1···αN (x1, · · · , xN ; t) for finding at time t the
particle of type α1 at site x1, particle of type α2 at site x2,
etc. We take these functions to define probabilities only in
the physical region x1 < x2 < ... < xN . The most general
master equation for an asymmetric exclusion process is

∂

∂t
Pα1···αN (x1, · · · , xN ; t)=Pα1···αN (x1−1, · · · , xN ; t)+· · ·

+ Pα1···αN (x1, · · · , xN − 1; t)−NPα1···αN (x1, · · · , xN ; t).
(4)

This equation describes a collection of N particles drifting
to the right with unit rate. It can be shown that if one
decides to solve the master equation by coordinate Bethe
ansatz method, one may only choose all the diffusion rates
equal, which can be scaled to one [24]. So in equation (4),
we take all the diffusion rates equal to one. The master
equation (4) is only valid for

xi < xi+1 − 1, (5)

since for xi = xi+1 −1, there will be terms with xi = xi+1

in the right-hand side of equation (4), which is out of
the physical region. One can, however, assume that (4)
is correct for all the physical region xi < xi+1, and im-
pose certain boundary conditions for xi = xi+1. These
boundary conditions determine the nature of the interac-
tions between particles. Now the question is that what are
the possible boundary conditions? To see this, we follow
the same argument which has been given for single-species
model in [28]. If one considers the master equations (4) for
two-particles probabilities, finds

∂

∂t

∑

x2

∑

x1<x2

Pα1α2(x1, x2; t)=
∑

x2

∑

x1<x2

[Pα1α2(x1−1, x2; t)

+Pα1α2(x1, x2 − 1; t) − 2Pα1α2(x1, x2; t)]

=
∑

x2

∑

x1<x2

Pα1α2(x1, x2; t) −
∑

x

Pα1α2(x, x+ 1; t)

+
∑

x2

∑

x1<x2

Pα1α2(x1, x2; t)

+
∑

x

Pα1α2(x, x; t) − 2
∑

x2

∑

x1<x2

Pα1α2(x1, x2; t)

= −
∑

x

Pα1α2(x, x+ 1; t) +
∑

x

Pα1α2(x, x; t). (6)
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Now let us exclude the creation and annihilation pro-
cesses, in other words we consider the processes in which
the number of particles is constant in time. Therefore if
we sum equation (6) over α1 and α2, the left-hand side
becomes zero, so the right-hand side must be also zero.
The only possible choice that leads the right-hand side of
equation (6) to zero, and consistent with more-than-two
particle analogue of equation (6) (see Ref. [28]) is taking
Pα1α2(x, x; t) as a linear combination of Pβ1β2(x, x + 1; t)
and Pβ1β2(x−1, x; t)’s. Therefore the most general bound-
ary condition is

Pα1α2(x, x) =
∑

β

bβ1β2
α1α2

Pβ1β2(x− 1, x)

+
∑

β

cβ1β2
α1α2

Pβ1β2(x, x+ 1). (7)

β stands for (β1β2). These b and c matrices introduce
interactions to particles. Inserting equation (7) in the
right-hand side of equation (6) and sum over α1 and α2,
results

−
∑

x

∑

α

Pα1α2(x, x + 1)

+
∑

x

∑

β

(
∑

α

(b + c)β1β2
α1α2

)
Pβ1β2(x, x + 1) = 0. (8)

Therefore the sum over the elements of each column of the
matrix b+ c must be equal to one,

∑

α

(b+ c)β1β2
α1α2

= 1. (9)

Note that for annihilation process, the condition (9) need
not be satisfied [28].

If the matrices b and c are diagonal, then the boundary
condition (7) does not induce reactions in which the types
of the particles are changed. So the left-hand side of (6) is
zero, without summing over α1 and α2, and therefore

−
∑

x

Pα1α2(x, x+ 1)

+
∑

x

(b + c)α1α2
α1α2

Pα1α2(x, x+ 1) = 0. (10)

So in diagonal case, we have, instead of condition (9),

b = 1 − c. (11)

The simple exclusion processes of [16] is an example of
this model with p = 1 and b = 0, the drop-push model
with equal rate is p = 1 and c = 0 case, and with
non-equal rate, is an example of one-species case of equa-
tions (7) and (11) [17]. The two-species model of [23], spe-
cial p-species of [24] and general p-species reactions of [26]
are examples of equations (7) and (9) with b = 0. Finally
the extended drop-push model of [27] is an example with
c = 0. Now we are going to consider the situations which
have not been studied yet, that is the multi-species bound-
ary conditions in which both b and c matrices present.

3 Diagonal c

As the first step of our study, let us consider the matrix c
to be diagonal. As we will show in the next section, the
non-diagonal elements of c are reaction rates and so they
are non-negative, but the diagonal elements are not reac-
tion rates and are defined through equation (9), which for
diagonal c results

cβ1β2
β1β2

= 1 −
∑

α

bβ1β2
α1α2

. (12)

Now consider Ṗα1α2(x, x + 1). Using equations (4), (7)
and (12), one finds

Ṗα1α2(x, x+1) =Pα1α2(x−1, x+1)

+
∑

β

bβ1β2
α1α2

Pβ1β2(x − 1, x)

−


1+
∑

β

bα1α2
β1β2



Pα1α2(x, x+1). (13)

The above evolution equation determines the following re-
actions as the source and sink of this model

Aα∅ → ∅Aα with rate 1,

Aβ1Aβ2∅ → ∅Aα1Aα2 with rate bβ1β2
α1α2

. (14)

To check the consistency of our description, we next con-
sider the 3-particle probability Pα1α2α3(x− 1, x, x+1). In
this case, the boundary term Pα1α2α3(x− 1, x, x) appears
in the right-hand side of master equation. To calculate this
term, we must use the boundary condition (7) in two steps.
The result is

Pα1α2α3(x− 1, x, x) =

∑

β

bβ2β3
α2α3

[
∑

γ

bγ1γ2
α1β2

Pγ1γ2β3(x − 2, x− 1, x)

+ cα1β2
α1β2

Pα1β2β3(x− 1, x, x)

]

+ cα2α3
α2α3

Pα1α2α3(x− 1, x, x+ 1). (15)

It is seen that the boundary term Pα1α2α3(x − 1, x, x) is
found as a linear combination of other boundary terms,
i.e. Pα1β2β3(x− 1, x, x)’s. To avoid this problem, which in
general does not lead to a consistent description of the
interactions, we have two choices. One choice is to restrict
ourselves to the cases in which the multiplication factors of
the boundary terms in the right-hand side of equation (15)
are zero. Then

cα1β2
α1β2

bβ2β3
α2α3

=

(
1 −

∑

γ

bα1β2
γ1γ2

)
bβ2β3
α2α3

= 0. (16)
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So for non-zero reaction rates, i.e. bβ2β3
α2α3

�= 0, we have
cα1β2
α1β2

= 0 (i.e.
∑

γ b
α1β2
γ1γ2

= 1). In this case the model
reduced to one studied in [27], that is the extended
drop-push model.

The second choice is to consider the situations in which
the boundary term in the right-hand side of equation (15)
is the same as one appeared in the left-hand side. In other
words, we choose

cα1β2
α1β2

bβ2β3
α2α3

= rα1α2α3δ
β2
α2
δβ3
α3
. (17)

This means that the matrix b must be also diagonal.
Therefore we have

bαβ
αβ := rαβ , cαβ

αβ = 1 − rαβ

Pαβ(x, x)=rαβPαβ(x−1, x) + (1−rαβ)Pαβ(x, x+1). (18)

Considering Ṗαβ(x, x + 1), equations (4) and (18) show
that the reactions are

Aα∅ → ∅Aα with rate 1,

AαAβ∅ → ∅AαAβ with rate rαβ . (19)

But if one considers Ṗαβγ(x, x + 1, x + 2), or other
n-adjacent particles probabilities, finds that the master
equation (4), boundary condition (7), with b and c given
in (18) can consistently describe the drop-push reactions
only if rαβ is independent of α and β. In this way we arrive
at the one-parameter drop-push model, previously studied
in [17].

So in brief, considering c as a diagonal matrix, does
not lead to any new model.

4 Non-diagonal c

Like the previous section, to find the reactions which exist
in this case, we must first consider Ṗα1α2(x, x+ 1). Using
equations (4), (7) and (9), we arrive at

Ṗα1α2(x, x+1)=Pα1α2(x−1, x+1)+
∑

β

bβ1β2
α1α2

Pβ1β2(x−1, x)

+
∑

β

cβ1β2
α1α2

Pβ1β2(x, x+1)−2Pα1α2(x, x+1)

= Pα1α2(x−1, x+1)+
∑

β

bβ1β2
α1α2

Pβ1β2(x−1, x)

+
∑

β �=α

cβ1β2
α1α2

Pβ1β2(x, x+ 1)

−


1 +
∑

β

bα1α2
β1β2

+
∑

β �=α

cα1α2
β1β2





×Pα1α2(x, x + 1), (20)

in which we use

cα1α2
α1α2

= 1 −
∑

β

bα1α2
β1β2

−
∑

β �=α

cα1α2
β1β2

. (21)

The evolution equation (20) describes the following
two-particle reactions:

Aα∅ → ∅Aα with rate 1,

AαAβ → AγAδ with rate cαβ
γδ ,

AαAβ∅ → ∅AγAδ with rate bαβ
γδ . (22)

To find the more-than-two particles reactions, we must
consider Ṗα1···αn(x, x+1, · · · , x+n−1). In n = 3, we first
need to know Pα1α2α3(x− 1, x, x). Using (7), we have

Pα1α2α3(x−1, x, x) =
∑

βγ

bβ2β3
α2α3

[
bγ1γ2
α1β2

Pγ1γ2β3(x−2, x−1, x)

+cγ1γ2
α1β2

Pγ1γ2β3(x − 1, x, x)
]

+
∑

β

cβ2β3
α2α3

Pα1β2β3(x−1, x, x+1).

(23)

Again we consider two cases. In the first case, we take the
matrices b and c such that

∑

β2

cγ1γ2
α1β2

bβ2β3
α2α3

= rα1α2α3δ
γ1
α1
δγ2
α2
δβ3
α3
. (24)

Then equation (23) results

P�α(x− 1, x, x) =
∑

βγ

bβ1β2
α1γ b

γβ3
α2α3

1 − r�α
P�β(x− 2, x− 1, x)

+
∑

β

cβ2β3
α2α3

1 − r�α
Pα1β2β3(x− 1, x, x+ 1), (25)

where �α = (α1, α2, · · · ). Using (25) in computing Ṗ�α(x −
1, x, x+ 1), one can easily see that the resulting evolution
equation gives different rates for same reaction. For exam-
ple it gives the rate cβ1β2

α1α2
for process β1β2α3 → α1α2α3,

which is consistent with second reaction of equation (22),
and rate cβ2β3

α2α3
/(1 − r�α) for reaction α1β2β3 → α1α2α3.

The only way to obtain the consistent result is taking
r�α = 0. Therefore we restrict ourselves to the matrices b
and c with property

∑

β2

cγ1γ2
α1β2

bβ2β3
α2α3

= 0. (26)

Note that this constraint is equivalent to

(1 ⊗ b)(c⊗ 1) = 0, (27)
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in which b and c are p2 × p2 matrices satisfying (9), and 1
denotes the p×p identity matrix. Assuming (26) and using
equations (4), (7) and (23), Ṗ�α(x, x+ 1, x+ 2) becomes

Ṗ�α(x, x+ 1, x+ 2) = P�α(x − 1, x+ 1, x+ 2)
+
∑

β

bβ1β2
α1α2

Pβ1β2α3(x− 1, x, x+ 2)

+
∑

β �=α

cβ1β2
α1α2

Pβ1β2α3(x, x + 1, x+ 2)

+
∑

β

b
�β
�αP�β(x− 1, x, x+ 1)

+
∑

β �=α

cβ2β3
α2α3

Pα1β2β3(x, x + 1, x+ 2)

−


1 +
∑

β

bα1α2
β1β2

+
∑

β �=α

cα1α2
β1β2

+
∑

β

bα2α3
β2β3

+
∑

β �=α

cα2α3
β2β3





×P�α(x, x + 1, x+ 2), (28)

in which we use equation (21) for cα1α2
α1α2

and cα2α3
α2α3

. In above

equation, b
�β
�α stands for

b
�β
�α =

∑

γ

bβ1β2
α1γ b

γβ3
α2α3

. (29)

The source terms of equation (28), besides the reac-
tions (22), are the following 3-particle drop-push reaction

Aβ1Aβ2Aβ3∅ → ∅Aα1Aα2Aα3 with rate b
�β
�α. (30)

The sink terms are also consistent with reactions (22)
and (30), provided

∑

β

b�α
�β

=
∑

βγ

bα1α2
β1γ bγα3

β2β3
=
∑

β

bα1α2
β1β2

. (31)

This is the last constraints that must be satisfied by
the elements of matrix b. It can be shown that the
more-than-three adjacent particles probabilities are con-
sistent with following reactions

Aα∅ → ∅Aα with rate 1,

AαAβ → AγAδ with rate cαβ
γδ ,

Aα0 · · ·Aαn∅ → ∅Aγ0 · · ·Aγn

with rate (bn−1,n · · · b0,1)α0···αn
γ0···γn

, (32)

if the constraints (9), (26) and (31) are satisfied. In equa-
tion (32), we use the following definition

bk,k+1 = 1 ⊗ · · · ⊗ 1 ⊗ b︸︷︷︸
k,k+1

⊗1 ⊗ · · · ⊗ 1. (33)

The important point is that we need not any further con-
straint. For example in describing the source and sink

terms of the evolution equation of P�α(x, x+1, x+2, x+3),
we encounter the constraint

∑

βγθ

bα1α2
β1γ bγα3

β2θ b
θα4
β3β4

=
∑

β

bα1α2
β1β2

. (34)

Now as (see Eq. (31))

∑

βθ

bγα3
β2θ b

θα4
β3β4

=
∑

β

bγα3
β2β3

, (35)

constraint (34) reduces to
∑

(βγ) b
α1α2
β1γ bγα3

β2β3
=
∑

β b
α1α2
β1β2

,
which is nothing but equation (31). This completes our
investigation and the final processes are those indicated
in (32). Of course, the question of solvability is open yet.

As the elements of matrix b and the non-diagonal
elements of matrix c are reaction rates, they must be
non-negative, and this point restricts the allowed solutions
of equations (9), (26) and (31). Let us focus on two class
of solutions. To be specific, we consider p = 2 case, but
the arguments can be easily applied to arbitrary p. In
p = 2, we may denote the two-particle states (α1, α2) as
following:

|1〉 =(1, 1), |2〉 =(1, 2), |3〉 =(2, 1), |4〉 =(2, 2). (36)

solution of class 1: If bβ2β3
α2α3

in equation (26) is indepen-

dent of β2, that is

b1β3
α2α3

= b2β3
α2α3

= · · · = bpβ3
α2α3

, (37)

then equation (26) reduces to

∑

β

cγ1γ2
α1β = 0. (38)

For p = 2, equation (37) gives b 1
i = b 3

i (for β3 = 1) and
b 2
i = b 4

i (for β3 = 2), and equation (38) for α1 = 1, 2
specifies the elements of c as following

c =





−c 1
2 c 2

1 0 0
c 1
2 −c 2

1 0 0
0 0 −c 3

4 c 4
3

0 0 c 3
4 −c 4

3



 . (39)

It can be easily shown that if we take the sum of
elements of each column of b equal to one, then the
constraints (9) and (31) are also satisfied. The resulting
model is a ten-parameter reaction-diffusion model.

solution of class 2: If we take, for each β, one or both
of cγ1γ2

α1β and bβγ3
α2α3

equal to zero, then equation (26) is sat-
isfied. In p = 2, we can take cγ1γ2

α12
= 0 and b1γ3

α2α3
= 0,

which means that taking zero the second and fourth rows
of c and first and second columns of b. Then solving (31),
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results b 3
2 + b 3

4 = b 4
2 + b 4

4 = 1 and
∑

i b
3

i =
∑

i b
4

i . Fi-
nally considering (9) and noting the non-negativity of re-
action rates, gives

b =





0 0 0 0
0 0 b 3

2 b 4
2

0 0 0 0
0 0 1 − b 3

2 1 − b 4
2



 ,

c =





1 − c 1
3 c 2

1 c 3
1 0

0 0 0 0
c 1
3 1 − c 2

1 −c 3
1 0

0 0 0 0



 , (40)

with condition
(
b 3
2 , b

4
2 , c

2
1

) ≤ 1. (41)

In p = 2, one can show that these two classes are the
complete set of solutions of the constraint equations. Now
we must seek the Bethe ansatz solution for the allowed set
of parameters.

5 The Bethe ansatz solution

To solve the master equation (4) with boundary condi-
tion (7), we consider the following ansatz

Pα1,··· ,αN (x; t) = e−EN tψα1,··· ,αN (x), (42)

with

Ψ(x) =
∑

σ

Aσe
iσ(p).x. (43)

Ψ is a tensor of rankN with components ψα1,··· ,αN (x), and
the summation runs over the elements of the permutation
group of N objects [29,30]. Inserting (42) in equations (4)
and (7), results, respectively,

EN =
N∑

k=1

(
1 − e−ipk

)
, (44)

and

Ψ(· · · , xk = x, xk+1 = x, · · · ) =
bk,k+1Ψ(· · · , xk = x− 1, xk+1 = x, · · · )
+ ck,k+1Ψ(· · · , xk = x, xk+1 = x+ 1, · · · ). (45)

ck,k+1 defined like bk,k+1 in equation (33). The coeffi-
cients Aσ can be determined by inserting equation (43)
in (45), which gives
[
1 − e−iσ(pk)bk,k+1 − eiσ(pk+1)ck,k+1

]
Aσ

+
[
1 − e−iσ(pk+1)bk,k+1 − eiσ(pk)ck,k+1

]
Aσσk

= 0. (46)

σk is an element of permutation group which only inter-
changes pk and pk+1:

σk : (p1, · · · , pk, pk+1, · · · , pN) →
(p1, · · · , pk+1, pk, · · · , pN ). (47)

Using (46), Aσσk
is obtained from Aσ as following

Aσσk
= Sk,k+1(σ(pk), σ(pk+1))Aσ, (48)

where

Sk,k+1(z1, z2) = 1⊗ · · · ⊗ 1⊗ S(z1, z2)︸ ︷︷ ︸
k,k+1

⊗1⊗ · · · ⊗ 1. (49)

S(z1, z2) is the following p2 × p2 matrix

S(z1, z2) = − (1 − z−1
2 b− z1c

)−1 (
1 − z−1

1 b− z2c
)
, (50)

and zk = eipk .
Until now, all the b and c matrices are acceptable. But

we must note that the generators of the permutation group
satisfy σkσk+1σk = σk+1σkσk+1, so one also needs

Aσkσk+1σk
= Aσk+1σkσk+1 . (51)

In terms of S-matrices, equation (51) becomes

S12(z2, z3)S23(z1, z3)S12(z1, z2) =
S23(z1, z2)S12(z1, z3)S23(z2, z3). (52)

Writing S-matrix as the product of the permutation ma-
trix Π and a R matrix:

Sk,k+1 =: Πk,k+1Rk,k+1, (53)

equation (52) is transformed to

R23(z2, z3)R13(z1, z3)R12(z1, z2) =
R12(z1, z2)R13(z1, z3)R23(z2, z3). (54)

This is the spectral Yang-Baxter equation [31–33].
Now the matrices b and c must be such that if one

computes the two-particle S-matrix (50) by them, it sat-
isfies the spectral Yang-Baxter equation (54), or equiva-
lently equation (52). These equations are complicated and
determining the elements of b and c, in such a way that
equation (52) is satisfied, is not easy.

For b = 0, the S-matrix (50) becomes a binomial of
degree one with respect to z2 and therefore (52) becomes
a quadratic expression with respect to z3. Using this, one
can transform the spectral Yang-Baxter equation (52) to a
non-spectral matrix equation for matrix c, which its study
is much easier than equation (52) [26]. The same is true
for c = 0, since in this case equation (50) is linear in
z−1
1 = e−ip1 [27]. When b and c are both different from

zero, this procedure does not work because of the presence
of z2 and z−1

2 (or equally z1 and z−1
1 ) in both terms of (50).

For matrices b and c which are given in equation (40),
if one computes the corresponding S-matrix and writes
equation (52) as RHS – LHS = 0, then one has 64 equa-
tions that must be solved for five variables b 3

2 , b
4

2 , c
2

1 , c
3

1
and c 1

3 . The solutions must be momentum-independent
and non-negative. By obtaining the set of solutions of
this system of equations by standard mathematical soft-
wares, it is seen that all of the solutions are momentum-
dependent except one. This only acceptable solution
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is: b 3
2 = 1, and other four parameters are zero. There-

fore the solvable two-species reaction-diffusion model is
defined through the following b and c matrices:

b =





0 0 0 0
0 0 1 0
0 0 0 0
0 0 0 1



 , c =





1 0 0 0
0 0 0 0
0 1 0 0
0 0 0 0



 . (55)

These matrices introduce the following reactions, with
A ≡ A1 and B ≡ A2,

A∅ → ∅A
B∅ → ∅B
AB → BA
BA∅ → ∅AB
BB∅ → ∅BB

BAA∅ → ∅AAB
BAB∅ → ∅ABB
BBA∅ → ∅BAB
BBB∅ → ∅BBB

... (56)

The dots indicates the more-than-three particle drop-push
reactions which are specified by equations (32) and (33),
and all reactions occur with rate one.

6 Two-particle conditional probabilities
for reactions (56)

The conditional probability P (�α,x; t|�β,y; 0) is the prob-
ability of finding particles α1, α2, · · · at time t at sites
x1, x2, · · · , respectively, if at t = 0 we have particles
β1, β2, · · · at sites y1, y2, · · · , respectively. In two-particle
sector, it is




PAA

PAB

PBA

PBB



 (x; t|�β,y; 0) =

1
(2π)2

∫
e−E2te−ip.yΨ(x1, x2)dp1dp2, (57)

where by equations (43), (48), (50) and (55), Ψ(x1, x2) is:

Ψ(x1, x2) =





a
b
c
d



 eip.x + S12(z1, z2)





a
b
c
d



 eip̃.x, (58)

in which p = (p1, p2), p̃ = (p2, p1), and





a
b
c
d



 stands for

Aσ=1 and specified by the initial condition. z1 = eip1 ,
z2 = eip2 , and S12(z1, z2) is:

S12 (z1, z2) =





z2−1
1−z1

0 0 0
0 0 1

z1
0

0 z2 0 0
0 0 0 z2(1−z1)

z1(z2−1)



 . (59)

After some calculations, one finds (see for example
Refs. [23] and [24] for more details):

P (A,A,x; t|A,A,y; 0) = F1(t) + F2(t),
P (A,B,x; t|A,B,y; 0) = F1(t),
P (B,A,x; t|A,B,y; 0) = F4(t),
P (B,A,x; t|B,A,y; 0) = F1(t),
P (A,B,x; t|B,A,y; 0) = F3(t),
P (B,B,x; t|B,B,y; 0) = F1(t) + F5(t), (60)

and all other probabilities are zero. Fi(t)’s are:

F1(t) = e−2t tx1−y1

(x1 − y1)!
tx2−y2

(x2 − y2)!
,

F2(t) = e−2t

{
tx1−y2+1

(x1 − y2 + 1)!
− tx1−y2

(x1 − y2)!

}

×
∞∑

k=0

tx2−y1+k

(x2 − y1 + k)!
,

F3(t) = e−2t tx2−y1−1

(x2 − y1 − 1)!
tx1−y2

(x1 − y2)!
,

F4(t) = e−2t tx2−y1

(x2 − y1)!
tx1−y2+1

(x1 − y2 + 1)!
,

F5(t) = e−2t

{
tx2−y1

(x2 − y1)!
− tx2−y1−1

(x2 − y1 − 1)!

}

×
∞∑

k=1

tx1−y2+k

(x1 − y2 + k)!
. (61)

Note that beginning with initial state (A,B), the system
can go to state (B,A) by third reaction of (56) and again
goes back to (A,B) by fourth reaction, etc.. As the rates of
reactions are equal, we expect that at large time, the prob-
abilities of finding (A,B) and (B,A) are equal, if they are
summed over all accessible sites. In fact, if one calculates
the difference of these two probabilities, finds:

D(t) =:
∞∑

x2=y2

x2−1∑

x1=y1

[P (A,B,x; t|A,B,y; 0)

−P (B,A,x; t|A,B,y; 0)]

= e−2t

[
2

y2−y1−1∑

m=1

Im(2t) + I0(2t)

]
, (62)

in which In(x) is the n-th order Bessel function of the first
kind. Now at x→ ∞, we have

In(x) → ex

√
2πx

, (63)

so

lim
t→∞D(t) =

M√
4πt

→ 0, (64)

where M is the number of In(2t)s in equation (62). The
final result confirms our expectation. The same result can
be proved when the initial state is (B,A).

I would like to thank N. Ahmadi for useful discussions.
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